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S U M M A R Y  
The aim of the study, reported of in this paper, is to determine the shape and position of the interface which separates 
the fresh from the salt water in a coastal aquifer. In this aquifer, fresh water flows from land towards the sea because 
the head on the land is higher than on the seabottom. The upper boundary of the flow region, formed by the land 
surface and the seabottom has been approximated by a straight line. 

Firstly the problem is solved, by use of the method of conformal mapping and the hodograph, for the case that the 
head is constant along that part of the line which represents the land surface and also constant, but lower, on the 
part which represents the seabottom. Special attention is paid to the form and position of the interface when a drain 
is in operation in the fresh water region. 

The hodograph turns out to be multiple sheeted and contains internal branch points and poles. Therefore, a simple 
generalization of the Schwarz--Christoffel Integral is derived which maps such hodographs onto the upper half plane. 

Secondly it is shown that the solution can be generalized directly by superposition in the reference half plane. This 
permits the description of the flow case of an arbitrary number of drains. By superposition, also flow with drains and an 
arbitrary number of different levels in polders and dunes can be described. 

Thirdly the upconing of the interface under a drain is studied in more detail for a simple case. 
A test was run in a parallel plate model in order to verify some of the formulas for upcoming, derived in this paper. 

Test results and theory agree satisfactorily. 

1. Introduction 

In coastal aquifers there often exists a situation in which the interface between fresh and salt 
water is steady. In most cases the flow rates in the salt water region are much lower than those 
in the fresh and may therefore be neglected. It is of practical interest to know the position and 
shape of the interface under various conditions. This is the case, for instance, when the interface 
cones up under a drain and when in a polder a relatively low head is maintained so that the 
interface rises. In the first case, brackish water will appear in the drain if the upconing is too 
large and in the second case the rising of the interface can be harmful for the vegetation in the 
polder. 

The mathematical description of the real situation ~s rather complicated and therefore some 
simplifications will be made. It is supposed that the fresh and salt water are divided by an 
interface rather than a transition zone, and that the salt water is at rest. Inhomogenities of the 
permeability are neglected, and only two-dimensional flow problems will be considered. 

As an example of the flow problems that can be treated with the methods developed in this 
paper, consider the flow of fresh water above salt water at rest in a coastal aquifer (see Fig. 1). 

LANP POLpE~ 17U~tE~ SEA, 

sa4r . . . .  

Figure 1. The coastal aquifer. 
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In the dune area a relatively high head is maintained, while in a polder more land inwards, the 
head is lower. On the land side the polder is bounded by a region where the head is maintained 
on a level, higher than on the seabottom. Due to the differences in the head, flow will occur in 
the fresh water zone. One or more drains may be in operation somewhere in the flow region. 

Even with the simplifications mentioned above, the exact solutions of such flow problems 
are rather complicated and consequently not very useful for practice. Therefore, some further 
approximations will be made in the subsequent study. 

The influence of drains on the shape of the interface in coastal aquifers has been investigated 
by various authors [1], [2], [3]. In these investigations, the upper boundary of the flow region 
is usually approximated by an impervious layer. This leads to a flow case which describes 
correctly the situation close to the coast. However, a disadvantage of this flow case is that all of 
the fresh water is coming from infinity which causes a continued lowering of the interface 
towards infinity. In this paper the more realistic case will be considered that fresh water is 
supplied from above (for instance infiltration water, supplied by canals, lakes, etc.). This is done 
by approximating the upper boundary of the flow region by straight lines of constant head. 
(see Fig. 2.) 

Figure 2. The flow case, which approximates the coastal aquifer of Fig. 1. (The dashed line is the soil surface). 

The flow problem which is obtained in this way can be solved analytically by means of the 
method of conformal mapping. The form of the solution will be given for the general flow case. 
In that case an arbitrary number of polders are present in addition to the dunes, as well as 
strips of land where a higher head is maintained. An arbitrary number of drains or negative 
drains are in operation somewhere in the flow region. 

In the literature on groundwater flow, problems of this kind are solved by use ofhodographs. 
No solutions are known for interface problems where an arbitrary number 0f drains or negative 
drains are located arbitrarily inside the flow region. A difficulty in such problems is, that the 
hodograph, although an elegant tool, becomes multiple sheeted and may contain internal 
branch points of which the position, depends on the solution. Furthermore, the complex 
potential function is double valued along the dividing streamlines. De Josselin de Jong [2] 
was the first to solve an interface problem with a double sheeted hodograph with a sink, 
located on the boundary. The branch points of the hodograph were restricted to lie on the 
boundary also. 

It will be shown in this paper that multiple sheeted hodographs with sinks (i.e. poles) and 
branch points which are not located on the boundary can be mapped onto the upper half plane 
by a simple generalization of the Schwarz-Christoffel Integral. Moreover, the complication of 
the double valuedness of the complex potential along the dividing streamlines will be eliminated. 

Furthermore it shall be shown that the solution for the flow case with dunes and an arbitrary 
number of polders and of drains in operation can be derived directly from the solution with 
one drain and dunes only. It appears that the parametric form of the latter solution permits 
superposition in the reference plane. 

In section 5, the upconing of the interface under a drain, which can lead to brackish water in 
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Figure 3. Upconing under a drain. 

the drainpipe, will be studied in more detail. To this end, the foregoing flow case is simplified 
by leaving out the sea as well as the differences in the head on the land surface (see Fig. 3). 
Finally, in section 6, a report is made of some tests, carried out to verify some of the formulas 
for upconing, derived in this paper. 

2. The Map of the Interface onto the Hodograph Plane 

It follows from Darcy's law: [5], [6] 

q = - k  grad ~b = - g r a d  �9 (2.1) 

(where q = (qx, qr) is the specific discharge vector, k the coefficient of permeability and q5 the 
head), and from the continuity equation: 

div (q) = 0 (22) 

that q~, the velocity potential, must be a harmonic function ofx and y (x and y are the rectangular 
coordinates in the physical plane}. A function ~'(x, y), also harmonic, can be found, such that 
the complex potential: 

f2 = ~ + i7 j (2.3) 

is an analytic function of z = x + iy. Then, the method of conformal mapping can be used in 
order to determine f2 = f2(z). 

The hodograph (qx + iqr ) is related to f2 as follows: 

d~ 
q~ + iqr --" d~- w 

where the bar indicates th e complex conjugate. The analytic function 

dO .~ 
w = -  d-z '" (2.4) 

is the complex conjugate of the hodograph and is known as the specific discharge function. 
For the solution of interface problems, the hodograph can be used in order to avoid the 

complication that the interface is unknown. In the hodograph plane the interface is a circle 
[5], [6] as can be shown as follows. To start with, it is remarked that the equilibrium of the 
interface requires that the pressures in the fresh and salt water are equal in any point of the 
interface (see Fig. 4). Furthermore, the salt water is assumed to be at rest and therefore the 
pressure varies hydrostatically there: 

pf = p~ = a-Ys "Y (2.5) 

where ps and Pf are the pressures in the salt and fresh water and a represents a constant. The 
specific weights of fresh and salt water are respectively 7~ and 7f. Eq. (2.5) enables one to express 
the fresh water head (q~) as a function of y, because the salt water is at rest so that the head is 
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Figure 4. Detail of the interface. 

constant there. Hence: 

~p = ~ /k = y +  p f /~ f  : a/Tf-Y'(Ts - - ~ f ) / ~ f  �9 (2.6) 

Now, the specific discharge along the interface can be derived from eqs. (2.1) and (2.6). This 
gives : 

qs = -k(a /as) = -a, /as 

: s (ay/a ) 

= k* ( a y / a s )  = k* s i n  (6) 

where 6 is the inclination of the interface (see Fig. 4), and where : 

k* = [(7~- 7f)/Tf]" k.  (2.7) 

Furthermore, the interface is a streamline and the component of the specific discharge vector 
normal to the interface must be zero. 

Hence: 
2 2 qx + qy = (k*) z sinZ (6) 

qy/qx = tan (6). 

Elimination of 6 from these two equations gives: 

2 2 , (2.8)  qx+q~,-k qy=O 

which in the hodograph plane represents a circle, passing through the origin and with radius 
�89 

3. Interface Flow with One Drain and One Discontinuity in the Head. 

3.1. The Hodo#raph 

Firstly, the hodograph will be investigated for the flow problem without a drain*. Then, on the 
land surface which extends from the coast (C, see Fig. 5a) to A2 (infinity) the head is maintained 
on a constant level. The head on the sea6ottom which extends from the coast (C) over B to 
infinity (see Fig. 5a), is also constant. Since the head on the seabottom is lower than on land, 
fresh water flows from land to sea above salt water at rest. This salt water is pressed down by 
the fresh and extends under land. 

The hodograph for this flow problem will be constructed now. As is explained in the preceding 
section, the interface is mapped onto a circle in the hodograph plane (AB, see Fig. 5b). At A 
(infinity), the specific discharge is zero, because'the influence of the difference in the head on 
land and seabottom vanishes at infinity. The specific discharge vector is directed vertically 
upwards at B, because BC is a line of constant head. For the same reason the specific discharge 
vector is directed vertically upwards along BC. At C, the absolute value of the specific discharge 
vector is unlimited since C is a corner point. On the land surface (CAz) the head is constant 
and the specific discharge vector points vertically downwards. 

* This flow problem has been solved by Polubarinova-Kochina [7], pp. 355 356. 
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Figure 6. Fresh water flows from land partly towards the sea and 
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,artly to the drain. 

Secondly the hodograph will beinvestigated for the flow where a drain (R, see Fig. 6a) is in 
operation somewhere in the flow region. At this drain, the specific discharge vector is inifinite 
because the drain is schematized to a point. So, there are two points where the specific discharge 
vector is infinite (C and R). Furthermore, a stagnation point (S, Fig. 6a) will appear in the flow 
region so that there is a zero-discharge at two points (A and S). Since an infinite specific dis- 
charge corresponds to two different points in z (C and R) as well as a zero-discharge to two 
other different points in z (A and S), the hodograph consists of two sheets (see Fig. 6b). The 
shape of the first sheet, ABC, is unchanged, if compared with the flow without the drain (see 
Fig. 5b). The second sheet contains the images of the drain and the stagnation point. As can 
be deduced from the results, obtained in the appendix, the two sheets in this case are connected 
by two internal branch points. 

In order to facilitate the procedure of conformat mapping, which will be carried out later, 
the specific discharge function ( w = q x - i q y )  is inverted. Then the region in the w-1-plane 
(w-  1 =_ (qx - iqy)- ~ = u + iv) of Fig. 6c is obtained, which is bounded by straight line segments, 
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because the circular arc (BA, see Fig. 6b) is transformed to the straight line v= i/k* (BA~, see 
Fig. 6c). 

Now that the region in the w- a-plane is known, the flow problem can be solved by means of 
the method of conformal mapping. This will be done in the following way. Firstly the region 
(ABCSR) in the w- a_plane of Fig. 6c will be mapped onto the reference half plane im ( > 0 of 
Fig. 6d. Secondly, (in the next section) the complex potential, (2, will be determined as a function 
of the same reference parameter ((). Then, by use of the relation (2.4) between ~, w- ~ and z, the 
latter can be found as a function of ( : 

z = - f w-:; (() [dO(O/d( ] d ( + C .  (3.1) 

Finally, the solution is given by ~2= ~(() and z = z(() which are known functions of the same 
reference parameter, (. 

The regicm in the w- t-plane of Fig. 6c will be mapped conformally onto the reference plane 
of Fig. 6d now. As is shown in the appendix, the mapping function is of the following form: 

f w -~ = c2 2-~- H {(2-7,)(2-yi)} [ ( 2 - a ) ( 2 - f ) ] - 2 d 2 + f l ,  (3.2) 
0 i = 1  

where ~ denotes the position of the stagnation point in ~, and where 7i denote the branch 
points. Point A is mapped onto infinity, point B onto ~ = 0, and point C onto (-- 1 (see Fig. 6d). 
Because w- ~ equals i/k* at point B (see Fig. 6c),/3= ilk*. 

Integration of eq. (3.2) gives: 

i ((--p)((--/O) 
w-a = k -~ + A �9 ~ (3.3) (~-<D(C-a) 

where the condition is used, that: 

Res [dw- ~ /d~] = 0 

(see the appendix, eq. (A.4)), and where A and p can be expressed in o- and k*. 

3.2. The Complex Potential 

The complex potential (~) as a function of the reference parameter will be derived by 
solving the flow problem in the reference plane. Consider the complex potential ~ * =  ~b*+ 
iku* for the flow in im ( >0  which originates ifA~B (see Fig. 7a) is a streamline and along BC 
the value for ~* is zero and along CA2 it is kH. A drain is located in ( = p. Since (by Riemann's 
Theorem) the (-plane can be considered as the conformal map of the physical plane, it follows 
that Q* (~) must equal ~2((), the function in search. 

/ 
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/ '  
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Figure 7. The fictitious flow in the reference plane. 
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f2 = f2(0 is the solution for the flow in (of  which a sketch is given in Fig. 7a. This flow problem 
can be solved easier if the ~ half plane is transformed into a quarter plane ((~). The (+-plane 
is drawn in Fig. 7b. The reference plane (ira ~ > 0, Fig. 7a) is mapped onto the upper right 
quadrant (see Fig. 7b). Since A1B is a streamline and BC and CA2 are lines of constant head, 
the flow in the ~-plane must be symmetric with respect to A a B and antisymmetric with respect 
to BCA2. Hence, if a drain operates at (~=p~, a drain must be introduced at ~ =  -13 �89 and 
negative drains at ~ = - p ~  and at ~ = ~ .  Furthermore, along A2C the value of �9 is kH and 
along CB it is zero. The elementary solution, describing the flow round a vortex with strength 
kH in C ((~=1) satisfies these conditions. A countervortex with strength - k H  must be 
introduced at ~ - -  - 1, in order that the flow in ~ (see Fig. 7b) is symmetric with respect to 
A 1B and antisymmetric with respect to BCA> Hence, the solution is of the following form: 

i ~ 1 & l _I 

(2= k H i l n ( ~ - I  ~ ((=-W)((~+p~) 7~ ~ + In (3.4) - -  (~_/7~)( (~+p~_)  + kH, 

One finds z as a function of ~ by integration of eq. (3.1). The first term of the integrand of this 
equation, w-~(O, has already been determined (see eq. (3.3)). The second term, d~(Q/d~ can 
be obtained from eq. (3.4) by differentiation. This gives: 

d~ (0 kHi (~- p) (~- fi) ~ . . . . .  + ~ Q ( ( -  1)(~ + pp)(p~ -p~) 
d~ - r~ (~-  1)( ( -  p)(~ -/5) ~ (3.5) 

The specific discharge is zero at the stagnation point, and the map of z onto i m (  > 0 must be 
conformal there. Therefore, it follows from eq. (2.4)" 

dO(() d( 
W-~ 

d~ dz' 

that dO(O/d( must be zero at the stagnation point, so that ~ = a is a root of the numerator of 
eq. (3.5). Furthermore, if the numerator is divided by i, the remaining expression is symmetric 
with respect to the real axis. Hence, ~ = ff is also a root of this numerator and therefore, eq. (3.5) 
can be written in the following form: 

d~ (0 B- (~-  a) (( - if) 1 
d( - ((_p)(~_fi) ((_1)~ ~, (3.6) 

where B is a constant, z can be found as a function of ~ by use of eqs. (3.1), (3.3),), (3.4), and (3.6). 
This yields: 

kH (~-  I Q i In (~-P~-)((~+t]~) - AB ( (~-p)(~-/3) 
z = ~ In ( i +  1 2nk ~ ( (~-  tS~-)(~+ p �89 _ ( ( -  1 ) ( ( -p ) ( ( -~ )  d ( + D  

Evaluation of the integral gives, taking into account that z is zero in C (( = i) and finite at the 
drain as well as y = 0 along AECB : 

kH Q ~ -~ ~ .  , ( + p  
z =  - 2 ~ - ~  In [ �89 + ~ i l n ~  + .~.~ arg(1,+p~). 

Separation of eq. (3.7) into real and imaginary parts gives: 

kH 
nk* 

[ r ~ sin �89 
arctan [_1 + r" cos �89 

(3.7) 

+ 

In �88189 �89 1) _ Q ~2r~sin�89189 
arctan { 2~ 2 (~ r )  ~ co--s �89 co~ �89 r cos ~ ) 

(3.8) 

2kH [- 2~sin�89 ] +  [2+2(2r)~cos�89 
Y rtk* a r c t a n [ l ~ J c ~ o s ~ 0 J  2@k *ln  �89 (3.9) 
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where: 
( = 2 e iO 

and : 
p = l* e i~ . 

The position of the drain in z (ZR = XR + iyR) can be related to its position in 4 (p = r e ~) by putting 
2=r,  0=~ in eqs. (3.8) and (3.9). This yields: 

2Q [ r ~ sin �89 ] kH 1 ~ Q . �89 + arctan - - z - - -  (3.10) xR -- ~k* lnz(r+Zr  cos�89 1) -  / l+r=  cos �89 J 

2kH [ r~sin�89 ] 5 
y R = -  rck--Varctan l+r~cos�89 - ln(cos�89 (3.11) 

The relations (3.10) and (3.11) can only be given in parametric form so that if XR and YR are 
given, r and ~ must be computed numerically. 

The equation for the interface in the physical plane can be found in parametric form from 
eqs. (3.8) and (3.9) by putting 0 =~z (the interface is mapped onto the negative ~-axis, cf. Fig. 6). 
This yields : 

k H l n � 8 8  Q [ rsin~z ] 2Q I r-~sin�89 - - + arctan - - r - - -  x ~k* ~ arctan [_2 ~_~-co~ e ~-~ l+r~ cos �89 (3.12) 

2kH Q ~2+2(2r)~s in �89  
Y - ~rk* arctan 2 + ~ In l _ ) ~ Z _ ~  s~n ~-~+~d. (3.13) 

Finally the position of point B, which lies on the interface and which is mapped onto ~ = 0, 
(cf. Fig. 6) can be found from eq. (3.12) by putting 2=0. This gives: 

kH Q ~k* [ r-~sin�89 ~ 
xB ~ l n 4  ~ + arctan l+r~cos�89 (3.14) 

4. Flow with an Arbitrary Number of Drains and an Arbitrary Number of Discontinuities of 
on the Land Surface 

The solution of the groundwater flow problem, treated in the preceding section, is given in 
parametric form. The parameter, (, cannot be eliminated, except in case the discharge of the 
drain is zero. Therefore, the position of the drain in the reference plane must be known. It 
can be found from given data in the physical plane, but only by means of numerical methods. 
However, a considerable benefit of the parametric form is that the solution which describes 
the flow with an arbitrary number of drains and of discontinuities in ~b on the land surface can 
be found simply by superposition. This will be shown now. 

To start with, the solution for flow with one discontinuity in �9 and one drain will be studied 
again. This solution has been given in the preceding section in the form of the following two 
equations (see eqs. (3.4) and (3.7)): 

kH 1 1 )  �9 1 / ' 1  

-~- ~ + In ((~_fi~)((~+p~) + kH (4.1) 

) + O 2Q 
z = - --rck* ~ i In ((~ +fi~) + ~ arg (1 + p~) . (4.2) 

One may write these two equations in the following symbolic form: 

f2 = f2,(r 1)+ On((, p)+C1 (4.3) 

z = z,((, 1)+za((, p)+C2 (4.4) 
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where: 

0~(~, v) = __kH / In ( (~ -  v ~ ) ~  ~ (4.5) 

z~ (~, v) - 2kH, ~ m �89 + v ~) (4.6) 

and where f2~(~, p) and zn(~, p)represent the second terms of eqs. (4.1) and (4.2) respectively. 
The solution, represented by eqs. (4.3) and (4.4) has been constructed in such a way that it 
satisfies all botmdary conditions, including the condition along the interface which may be 
characterised by the following equation (ef. eq. (2.6)) : 

r = - k*" y .  (4.7) 

Furthermore, eqs. (4.3) and (4.4) are valid for all complex p. Now, consider the following 
functions" 

#=1 

#=1 

(2~((, v,) + ~ Oa((,pj)+C ~ (4.8) 
j = l  

z, ((, v~,) + ~, zd ((, &)+ C2 (4.9) 
./=1 

where m is the number of vortices at ( =  vj, (# = 1, 2, 3, ..., m), and n the number of drains or 
negative drains at ~ = pj (j = 1, 2, 3 . . . . .  n). It can be verified, that these functions satisfy the 
condition along the interface (4.7) as well as all other boundary conditions. Therefore, eqs. 
(4.8) and (4.9) together represent the solution. 

Substitution of the functions, given in eqs. (4.1), (4.2), (4.5) and (4.6) for f2~, Od, Z~ and za in 
eqs. (4.8) and (4.9) yields: 

tz=l 

z = - - 2  

k(AHu) i ln (~ -v~)  + ~ Qj ((~-p~)(~+fi~) 
n ( ~ + v u )  j=l ~-~ In ~___~ ~+ _~ + C1 pj)(  

~ Qj ((- pj)  k(AHu) In �89 + ~ i l n  + C 2 . 
./_ 

(4.10) 

(4.11) 

In these equations, (AH~,) is the amount by which the head increases if the #th vortex is passed 
in z, going from the right to the left (see Fig. 8). 

t._....3 

, 7  . . . .  i 

Figure 8. The generalization of the flow problem. 

, jvz  / 

ccuo ~ ~ ~t, a~ 

The constants C, and C 2 c a n  be found in the same way as is done in section 3. The parameters 
vl, vz . . . . .  vm (vl = 1) and Pl, P2 . . . .  , p, can be determined numerically from given data in the 
physical plane as follows. In each vortex the value of z is known (z=xN,) as well as in each 
drain (z=xej+iyR). Substitution of the values for ff which correspond to these points (~= 
v~, ..., v,, and ( =  p 1 . . . . .  p, respectively) in eqs. (4.10) and (4.11) leads to m real and n complex 
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equations, which are sufficient for the determination of the m real parameters vi and the n 
complex parameters pj. 

5. Upconing 

When for water supply a drain above an interface is used, upconing occurs which may lead to 
the presence of brackish water in the drainpipe. This causes a considerable lowering of the 
water quality. Because there are reasons to suspect that the magnitude of the upconing is 
related to the amount of brackish water in the drainpipe, it is of interest to relate the upconing 
to the position and the discharge of the drain. Furthermore, one must know the maximal 
discharge of the drain for which the interface just remains stable (see Fig. 9b). This discharge 
depends on the position of the drain (ef. [1]). The upconing is pictured in Fig. 9a. 

~,a, rod, 5r 

kJPOO~t I g 6  

Figure 9. Upconing in the coastal aquifer. 

.L li~lT 51TgATION ~ 

In order to reduce the number of the parameters involved, the flow case will be studied 
where the influence of the seabottom is not taken into consideration and where there are no 
differences in the head on the land surface (see Fig. 10a). Now, no fresh water flows to the sea- 
bottom and C and B form one point in z (infinity, see Fig. 10a). The coordinate system in 
z(x, y) is chosen as follows. The y-axis points vertically upwards and passes through the drain 
(R, see Fig. 10a). The x-axis is chosen along the interface in the position when no fresh water is 
extracted by the drain. S (the stagnation point) and D are the intersection points of the y-axis 
with the interface (A1SB) and the line of constant head (CDA2) respectively (see Fig. 10a). 
The distance between the x-axis and CDA2 is H. Furthermore, the value of �9 along CDA 2 is 
now chosen to be zero: 

'PcD*2 = 0 .  (5.1) 

The (-plane is characterized by the following points. B and C are mapped onto ( =  0; S onto 
( =  - 1 and A onto ( =  oo (see Fig. 10b). Because the region in z (see Fig. 10a) is symmetric with 

[] 

. . . . . . . . . . .  I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

@ 
Figure 10. Upconing. 
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respect to the line DRS, this line will be mapped onto the unit circle in ~ (see Fig. 10@ It can 
be verified, that eqs. (3.4) and (3.7) now reduce to: 

Q In (~-~ - p~) ( ~  + fi~-) 0 (5.2) (~-~)(~+p~)  

z = H l n ~  + Q (~+P~ Q arg(p~)+iH (5.3) 7 ~ i l n ~  + ~-~ �9 

Substitution of: 

= ~v e iO (5.4) 

and 
p = e  i~ (5.5) 

in eq. (5.3) and subsequent separation of real and imaginary part yields" 

" 1  �89 1 1 O 1~ H Q f 2 sm ~ [2 cos 70 + cos ~ ]  ) 
x = - --  In 2 - arctan ~ - - -  ~ - -  ~ . . . .  ~ + - (5.6) 

zt ~ (2  + 2) :  cos ~0 cos �89 + cos e J 

r e - 0  Q 12 + 22 ~ cos �89 s )+  1 
y = H - -  + In . (5.7) 

2-~  ~;.+2,~ cos �89 iJ 

The position of the drain in z (za = xR + iyR) is found from eqs. (5.6) and (5.7) by putting 2 e *~ = e~t 
This gives : 

x R = 0  

y a =  H r~-~ Q In(cos�89 (5.8) 
7~ 7~k* 

The latter equation becomes after division by H and denoting the distance _of th_e drain above 
the x-axis (yn) by ho: 

ho _ ~ - ~  Q In (cos �89 (5.9) 
H rt ~k*H 

The equation for the interface can be found from eqs. (5.6) and (5.7) by putting 0 = ~. (the inter- 
face is mapped onto the negative ~-axis.) One finds the height of S (see Fig. 11) above the x-axis 
by putting 0 = rc and 2 = 1 in eq. (5.7). This gives: 

h Q 
- In [-cotan �88 (5.10) 

H ~k*H 

~ ~ !  

Figure 11. The parameters which determine the upconing. 

Elimination of ~ from eqs. (5.9) and (5.10) finally yields: 

h--0-~ -- 4- arctan { exp ( r C Q h )  } + & In (cosh zck*H ~ 
H ~ Q / (5.11) 
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Equation (5.11) is represented graphically in Fig. 12. 
Instability of the interface occurs if the top of the cone becomes a cusp (cf. Fig. 9b). Then, the 

mapping of ~ onto z is not longer conformal in point S and therefore the derivative of z with 
respect to ~ vanishes there: 

From this, one finds by use of eqs. (5.3) and (5.5) that a cusp originates if 

Q 
- 2 cotan (�89 (5.12) 

~k* H 

Elimination of c~ from eqs. (5.10) and (5.12) gives: 

h _ Q arcsinh . (5.13) 
H ~k*H Q / 

Eq. (5.13) bounds the graph in Fig. 12 on the upper right. 

-1,$ -1.O -.5 

.9 
t4 ~ .$ ................. 

�9 6 ..5 ........................................ 

.5 1.o 1.5 @~_ 

. . . . . . . . . . . . . . . .  r . . . . . . . . . .  l . . . . .  i 

Figure 12. The relation between the upconing (h/H) and the position (ho/H) and discharge (Q/(zk*H)) of the drain. 
The squares correspond to the four tests. 

6.  V e r i f i c a t i o n  T e s t  

To verify the formulas which are derived in the preceding section, some tests have been run in 
a parallel plate model (see Fig. 13). This model can be used as an analogue for two-dimensional 
groundwater flow. Indeed, Darcy's law for two dimensions (eq. (2.1)) is analogous to the flow 
of a viscous fluid through the narrow interspace between two parallel plates (see for instance 
[5]). The value of k* can be found from the following equation : 

k* = [(~'~- 7f)/Tf] gd2/(12v) 

where Ys and ?f are the specific weights of the heavier and the lighter fluid respectively, 9 is the 
acceleration of gravity, d is the distance between the parallel plates and v is the dynamic 
viscosity of the lighter fluid. The distance between the parallel plates was not completely 
constant over the model, but varied between 1.85 and 2.00 ram. An average value for d has been 
computed in the following way, suggested by mr. A. Mensinga, who run the tests. The model 
has been completely filled with a known volume of water (V). The area (A) of the model is 
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known, and d could be computed from: 

V 
d = ~  1.93mm. 

The other constants in eq. (6.1) had the following values: 

~s = 1.00305 gf/cm 2 

7r = 0.8686 gf/cm z 
g ,,~ 981 cm/sec 2 

v = 0.325 cm2/sec for a temperature of 22.2~ 

Substitution of these values in eq. (6.1) gives: 

k*= 1.46 cm/sec. ' (6.2) 

Four tests have been run, all of them with one drain in the fresh water region. The position of 
each test is denoted by a square in the graph of Fig. 12. A photograph of the test with the largest 
discharge of the drain is presented in Fig. 13. The streamlines are visualized by injecting from 

Figure 13. The photograph of test hr. 4. 

above ared colored fluid of the same specific weight and viscosity as the lighter fluid. It must 
be noted, that the actual interface is a little lower than is seen on the photograph. This is caused 
by the injection of the red colored fluid on both ends of the upper boundary of the model, 
which was necessary in order to visualize the stagnation point S and the streamline connecting 
it with the drain (see Fig. 13). 

The values of Q (the discharge of the drain), ho, H and h (see Fig. 11) were measured during 
the four tests: 
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Test number 1 2 3 4 

Q (cm2/sec) 54.3 85.9 114.5 128.9 ) 
ho (cm) 33.3 34.1 34.9 35.2 I (6.3) 
H (cm) 43.8 44.6 45.4 45.7 
h (cm) 5.0 8.4 12.0 13.7 (6.4) 

The dimensionless parameters Q/(r~k*H), ho/H and h/H, as used in the preceding section are 
found from eqs. (6.3), (6.4) and (6.2): 

Test number 1 2 3 4 

O/(nk*H) 0.270 0.420 0.550 0.615 / 
ho/H 0.760 0.765 0.769 0.770 j (6.5) 
h/H 0.114 0.188 0.264 0.300 (6.6) 

In order to compare the test results with the theory, the upconing (h/H) will be computed from 
eqs. (5.9) and (5.10) by use of eq. (6.5). To that end, first the value of a is computed from eq. 
(5.9): 

ho _ n - a  Q In [cos (�89 (6.7) 
H n ~k*H 

which gave for the four tests: 

Test number 1 2 3 4 

47.50 ~ 49.62 ~ 52.26 ~ 54.36 ~ (6.8) 

Now, by use of eqs. (5.10), (6.5) and (6.8) h/H can be found: 

Test number 1 2 3 4 

h/H 0.115 0.188 0.260 0.304 

which is in good agreement with the values which are found from the four tests: 

Test number 1 2 3 4 

h/H 0.114 0.188 0.264 0.300 

(cf. eq. (6.6)). 
Finally, the equation for the interface has been found by insertion of the values for ~, Q/(nk* H) 

and ho/H from the tests in eqs. (5.6) and (5.7) wherein 0 = n, because the interface is mapped onto 
the negative i-axis. The interface which is computed in this way can hardly be distincted from 
the actual interface, as found in each test. Therefore, no separate figures with the interfaces 
computed from the theory are presented. 
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Appendix 

Polygons with Internal Branch Points and Poles 

The conformal mapping of a region inside a closed polygon onto the upper half plane im ( _>_ 0 
( (=  ( +  #1) can be found by use of the Schwarz-Christoffel Integral: 

w = ~ (2--r  (A.I) 
~o v = l  

where n is the number of the corner points w~ which are mapped onto ( =  (,  (v = 1, 2, ..., n) 
and where the internal angles of the polygon are rp, = ( 1 -  k~)~. 

T h e  integral (A.1) is also valid if the polygon overlaps [4], provided that the branch points 
are located on the boundary. This property is used for the first time in groundwater flow by 
De Josselin de Jong [2]. 

A modification of the Schwarz-Christoffel Integral will be discussed which accounts for 
internal branch points (for the values of (, given by ( =  7~; i = 1, 2 . . . .  , m) and for poles in the 
interior region of the polygon (for the values of (, given by ~ = pj; j = 1, 2, ...,/) (see Fig. 14). 

"x j 

~'7 'do o'g(f-r) 
.L_LCr, a, . . . .  

Fig. 14. The w-plane consists of two sheets. The branch points (2) are internal. There is one pole in the interior region 
(S). {cf. also Fig. 6@ 

To start with, the following expression is considered: 

W = ~ ( ~ I ( v )  -k~' (~--~i ) (~-~i )  H [ ( ~ - f f J ) ( ~ - P J ) ] - 2 h ( ~ ) d ~ q - f l  (A.2) 
~o v = l  i=1 j = l  

where ?i (i = 1, 2 . . . . .  m) and pj (j = 1, 2, ..., l) are constants and where h(() represents a function 
which will be determined later. The function w((), presented in eq. (A.2), has poles of the first 
order for ( =  pj and ( =  ~j as well as internal branch points of the first order for ( =  ~i and ( =  7i. 
Branch points of higher order are formed if some of the ?i coincide. The integrand of eq. (A.2)- 
is symmetric with respect to the i-axis, if the function h(() fulfills the following condi t ion: .  

Im (h(r 0 .  (A.3) 

Then, the integrand has the property that its argument is constant between two consecutive 
corner points. This is the well known property of any Schwarz-Christoffel Integral. 

In order that the mapping is conformal in the poles, the condition: 

Res (dw/d~) = 0 (A.4) 
~=pj 

must be fulfilled, (cf. [4]) as can be concluded from the Laurent expansion of w (() around pj. 
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For m= 0 and l= 1, eq. (A.2) together with eq. (A.4) reduces to the well known Schwarz- 
Christoffel Integral, which maps the exterior of a polygon onto the upper half plane (cf. [4] ). 
From the conformality of the mapping (except in the points Yi and r and from eq. (A.3) it 
follows, that h(0 is an analytic function for all ( in im(  > 0. By means of Schwarz's Reflection 
Principle, h(()"can be continued analytically into im ~< 0, from which it is deduced, that 
h(() is analytic for all ~. Hence, h(() can be determined from its behaviour near infinity by use of 
Liouville's Theorem. If, for brevity's sake, the case is considered that a regular point of the 
boundary is transformed to infinity, the Laurent expansion of w(() near infinity is: 

w ( 0  = + . . .  

Hence: 

dw (~)/d~ = - ~q ( - 2 + 0 (~- a) . (A.5) 

The form near infinity of the function w(~) as given in eq. (A.2) is : 

- ~ k,+2m-41 
dw/d~ = ~ ~=' h(~) {~ ~oo) . 

Comparison with the Laurent expansion for w((), which is given in eq. (A.5), shows that the 
following unequality holds near infinity: 

~ kv+41-2m-2 

provided that ]M] is chosen large enough. 
Since h(~) is analytic for all ~, it can be deduced from Liouville's Theorem that h(~) is a 

polynomial of the order : 

~ k~ + 41- 2 m -  2 . (A.6) 

However, h(~) possesses no zeros since such would indicate additional branch points for 
w(~). Therefore, the order of the polynomial must be zero and h(~) reduces to a constant and, 
by appropriate choice of at, (see eq. (A.2)) to unity : 

h(~) = 1 (A.7) 

so that the condition (A.3) is fulfilled. Furthermore, the order of the polynomial is given by 
eq. (A.6) and vanishes only if: 

~ k ~ + 4 1 - 2 m - 2 = O  
or: ,=1 

1 " 
m = -  E k , + 2 l - 1  (A.8) 

2v=l 

where the number Z~= 1 k, is even, since a regular point of the boundary is transformed to 
infinity and since the polygon is closed. Hence: 

~ k ~ = N ' 2 ~  

where N equals the number of sheets in the w-plane, disregarding the poles. The final form of 
w(0 can be derived from eqs. (A.4) and (A.7). This yields: 

w = a (2 ' r  -k~ (2-y,)(2---f,) ]-I [(2-P~)(2-P~)]-2d2+fl  (14,.9) 
o i = I  j = l  

where the number m can be found from eq. (A.8) if the sum of the values for k, (E~ =-1 k,), as well 
as the number of the poles (l) is known. 

Journal of Enoineering Math., Vol. 6 (1972) 175-191 



Some cases of interface flow towards drains 191 

In case a corner point of the polygon is transformed to infinity, the corresponding term must 
be left out from eq. (A.9) but not the corresponding value for kv from eq. (A.8). 

A special case of the function, presented in eq. (A.9) is derived by Koppenfels and Stallmann 
(see [4], pp. 151-154) being the solution of a torsion problem. They did, however, not relate 
the solution to the geometrical properties of the polygon. 
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